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Abstract The q-analogue of the binomial distribution is defined by virtue of the q-binomial 
theorem, which takes the Euler distribution as its limiting form and is new to the literature. 

1. Introduction 

The binomial counting probability distribution PB(k; n, 7 )  and the Poisson distribution 
E'&, A) are well-studied discrete distributions of the random variable k, that are exten- 
sively used in various areas of sciences. For instance, in quantum optics, the coherent 
state and the binomial state are linear combinations of the numer states with coefficients 
chosen such that the photon-counting distributions are Poissonian or binomial, respec- 
tively [ 1,2]. Since the Poisson distribution P,(k, A) can be used as a convenient approxi- 
mation to the binomial distribution E'&; n, z) when n is large and 7 is small (but nz 
is constant A) (the so-called Poisson's theorem), the binomial state may reduce to the 
coherent state and to the number state in different limits. 

Recently much attention has been paid to q-deformed oscillators [3]. The single- 
mode q-Heisenberg algebra is defined as [4] 

. nu + - qu+u = 1 [ N ,  U + ]  =a+ [N,  U ]  = -a. (1) 

The q-analogue of the number state 

and the q-analogue of the coherent state 

have been extensively studied by many others. The density matrix for a pure q-coherent 
state is 

P = Ia>(al. (4) 
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The q-deformed Poisson distribution can be derived by averaging the density matrix in 
a q-number state 

(n\pln> =I (nl a>12=W (exp,,(la,2))-1. ( 5 )  
[nip! 

Thus an interesting question arises naturally, that is how to define a q-analogue of the 
binomial state so that it can reduce to the q-number state and to the q-coherent state 
in different limits. To answer this question, we need, mathematically, a q-deformed 
binomial distribution which takes the q-Poisson distribution as its limiting form and 
reduces to the ordinary binomial distribution when q-1. 

In mathematical literature, the q-deformed Poisson distribution is known as the 
Euler distribution. In addition, there is another kind of q-analogue of the Poisson 
distribution which is called the Heine distribution. These were put forward by 
Benkherouf and Bather [SI as feasible prior distributions in their study of stopping 
time strategies when sequentially drilling for oil. Kemp [6] has shown that the Euler 
and Heine distributions are Iimiting forms of a q-analogue of the Pascal (or negative 
binomial) distribution and a q-analogue of the binomial distribution, respectively. How- 
ever, in order to build the binomial state for the q-boson case, a new kind of q- 
analogue of the binomial distribution is appealing, which takes the Euler, but not Heine, 
distribution as its limiting form. 

This paper is devoted to defining a new q-analogue of the binomial distribution by 
virtue of the qdefonned binomial theorem and studying its limiting form as well as its 
properties, e.g. moments and recurrence relationships. This paper is arranged as follows: 
in section 2, we recall some facts about the Euler and Heine distributions in terms of 
our notation system; in section 3, with the aid of the q-binomial theorem, we introduce 
the new q-deformed binomial distribution and prove its limiting form is the Euler; in 
section 4, some properties &d applications of the new q-defonned binominal distribu- 
tion are discussed. 

2. The Euler and Heine distributions 

Throughout this paper, we use the following notation 

where [n]q=q"'-l[n]~/q,  solthat all expressions can reduce to the familiar non-deformed 
ones in the limit q-I .  Frbm Jackson [7],  we have the following relations: 

lim (1 -x);=(+'-q)-' (e;)-'=e;L. (7) 

As q-1 and if also x-*O such that x/(l -q) =A remains finite, the right-hand side of 
the above limiting formula tends to e-'. Also from (6) and (7), the Euler identity reads 

"-Pm 
(X+Y) ;+ '"=  (x +Y)",X+q"Y)Y 

Similarly, another identity is also obtained 



Asymptotic behauiour of the q-deformed binomial distribution 495 

Using the Euler identity (8),  one can express the probability mass fknction (PMF) 
of the Euler distribution as 

O<q<l O<a<l.  (10) 
This is the q-deformed Poisson distribution with parameter a / ( l  -q) exactly. From 
(9), the Heine distribution has PMF 

Their probability generating functions (PGFS) are 

(12) =:/I-* a/1-q I G ~ ( z .  a, q)= E pK(k; a, q)$=e4 (e4 1- 
k=O 

GH(z, p, Q)= 2 PH(k; p, Q)z'=ef7&1-Q(ef{h-Q)-' (13) 
k-0 

respectively. Thus it is easy to find out the interrelationship between the Euler and 
Heine distributions, i.e. their PMFS can be written in terms of one formula 

where O<q<l, O<a<l for the Euler, and I C q ,  a<O for the Heine distribution. In 
fact, replacing q by Q-' and a by -fie-' in (10) and (E), we obtain (11) and (13), 
respectively. From (10) and (1 1) we see clearly that the transitional distribution between 
Euler and Heine is Poissonian. Therefore, both Euler and Heine distributions can be 
recarded as the qdeformed Poisson distribution. Kemp introduced a third member of 
this q-deformed family of the Poisson distribution, the pseudo-Euler distribution with 
PMF and PGF"' 

respectively, where 

1 - ( - u ) k  

1 --(--U) ' [kl-.= 

Comparing (15) with (14), we find that replacing q by -U in (14) leads to (15) exactly. 
To summarize, the Euler, Heine and pseudo-Euler distributions arise from (14) when 
0 < q < 1, 1 < q and - 1 C q < 0, respectively. Also based on the fact 

o<PZ(I;a,q)/P(O;a,q).)P(2;a,q)=l+q (17) 
there is no other member in the q-family of the Poisson distribution, i.e. no valid 
distribution is possible when q <  -1. 
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3. The q-deformed binomial distribution 

The Euler PGF G,(z, a,  q) can be expressed as a limiting form of PGF 

G(z, a, q)= lim G N B ( ~ ;  z,a, 4). (18) 
n-m 

GN&;z, a,q)=(1-a)Xl-azX 

Using the q-deformed Newton binomial theorem [8] 

O<q<l  IZI (1 n= 1,2, 3, . . . (19) 

one can define a q-analogue of the Pascal (i.e. negative binomial) distribution with PMF 

O < q < I  O<a<l k=O, 1,2,. . 
from (19), where 

When q+1, (20) reduces to the standard Pascal distribution. The q-analogue of the 
negative binomial distribution is also known as the inverse absorption distribution, first 
studied by Dunk1 in 1981 [9]. Of course, when n-too, the q-deformed negative binomial 
distribution tends to the EnIer PMF 

[n+k-l],[n+k-2], . . . [n], 
lim PNB(k; n, a,  q) = lim 

n-.m n-m [kl,! 
a ( I -a) ;  

(21) - ( 4 1  - 4)’ -,)- - - ‘-Mk a,  4) 
tkl,! 

where the fact 

1 
lim [&=- 
n-ca 1-4 

has been used. 
Similarly, the Heine PGF Gi(z, P ,  Q) can be expressed as a limiting form of PGF: 

GH@. B, Q) = lim G 3 n  ; 2, P ,  Q). (22) 
n-m 

W n ;  2, P, Q ) = U  +Pz)”e/(l +P)”e 

The distribution with PGF (22) was discussed by Kemp and Kemp in 1991 [lo]. With 
the aid of the q-binomial theorem [11,7] 

we have the PMF of the distribution (22) as 

Pg(k;n, p, Q ) = t )  @(k-’)’2Pk((1+P)”p)-’ O<Q<1 O<p k=O,l, ..., n. 
Q 

(24) 
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When n-m, (24) tends to the Heine PMF 

So far we have two kinds of distribution (i.e. PNB and Pi), of which the limiting 
forms are the Euler and Heine distributions, respectively. Noticing that the q-Poisson 
distribution (5) is identical with the Euler distribution, to define a reasonable binomial 
state for the q-boson, we have to introduce another kind of q-binomial distribution 
which takes the Euler distribution as its limiting form and is new to the literature. We 
define the q-deformed binomial distribution as 

P&; n, z, q) = rk( 1 - z)",-" O<r<l  k=O, 1 , .  . . , n .  (26) 

When q - + l ,  (26) approaches the usual binomial distribution. By virtue of the q-binomial 
theorem (23), we obtain the PCF for (26) 

t) 

When z=1, (27) gives GB(n; 1, z, q)= 1, which means that the q-binomial distribution 
(26) is normalized. The limiting form of the PMF (26) can be derived easily, 

[n],[n- 1 I q .  . . [n - k +  I ]  lim PB(k; n, z, q) = lim 
"3- ,I-m [kIJ 

V(1-z);" 

which is the Euler distribution exactly.  this expression means that the usual Poisson's 
theorem about the limiting form of the binomial distribution is true in the q-deformed 
case. It may be called the qdeformed Poisson's theorem. Based on this theorem, it is 
easily seen that the limiting form of the PGF (27) is 

which is the PGF of the Euler distribution as expected. 

4. Properties and applications of the q-binomial distribution 

The recurrence relationship for the three distributions given by (20), (24) and (26) are 
respectively : 
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Many interesting quantities such as the mean value and the mean square deviation can 
be determined from the PGF for a distribution. To do this, let us introduce the p 
derivative defined by [4] 

In the q-deformed binomial distribution, we have 

=[nI4b - = q-'(E(Ikl:) - Ef[kl,)) (35) 
where E([k],)  is the mean value of [k], in the q-deformed binomial distribution, 
E([k]$) the second moment of [k],, and the fact [ k -  l],=q-'([k],-l) has been used in 
(35). Equations (34) and (35) lead to the mean square deviation of [k], in the q- 
deformed binomial distribution 

D(Ik1,) = ~ ( r k i : ) - ( ~ ( I k i 3 ) ~ = [ n i ~ ~ ( l -  5) 

As an application of the q-deformed binomial distribution introduced in the previous 
section, we construct the binomial state for a single-mode of the q-boson as 

where In) is the q-number state. Because G f n ;  1, r, q) = 1, the state 17, m) is normalized 
to 

It is also easily seen from the definition (37) that for s=O and 1 ,  with m finite, the q- 
binomial state I z, m )  reduces to the vacuum state IO) and the q-number state 
In=m) respectively. In the limit m-rm, the q-binomial state I r ,  m )  will approach a q- 
coherent state la=f i )  because of (28), where the parameter L=z/(l-4). Therefore, 
the q-binomial state (37) possesses all the desired limiting behaviour as an interpolating 
state between the q-number and the q-coherent states and reduces to the ordinary 
binomial state when q-1. Furthermore, using (34) and (36), we can calculate the mean 
value and the mean square deviation of the operator [N] ,=a+a  for the state Ir, m) 

(LNIq)=(r, m[[NIqIr, m>=[mIqr (39) 

<([NI,-<[Nl,))*)=<~, ml([NI,-([Nl,))21~, m > = [ m ] , r ( l - z )  (40) 
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respectively. The ratio of deviation to mean (Fano factor) for the state 17, m) is 

which shows the sub-Poissonian nature of the q-binomial distribution, 
The bunching parameter for the state I T ,  m )  is 

< ( [ ~ 1 ~ -  < [ ~ l ~ > ) ' >  -<[NIq)= -[ml,z2<o. (42) 
The second-order correlation function for the state I T, m )  is 

Equations (42) and (43) indicate that the q-binomial states are antibunched. As stated 
in 1121, antibunching and sub-Poissonian behaviour always accompany each other for 
single-mode time-independent fields; so do the q-binomial states. 

In summary, in order to construct the binomial state for the q-boson, we define a 
new distribution (the q-binomial distribution) in this paper, which takes the Euler 
distribution as its limiting form. Its application to the q-boson theory is shown. We are 
currently trying to formulate other meaningful models for the q-deformed binomial 
distribution; 
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